기존의 산업용 로봇은 자동차 회사를 비롯한 대기업을 중심으로 사용되어 왔습니다. 하지만 앞에서 언급한 사람-로봇 협업, 작고 가벼우며, 사용하기 쉽고, 유연한 특징들로 인해 중소기업에서의 사용이 증가할 것으로 예상됩니다. 기존 산업용 로봇은 별도의 독립적인 작업 셀(cell)이 필요했습니다. 결국, 생산 규모가 크고 복잡한 공장에서 로봇을 사용했습니다. 하지만 사람-로봇 협업이 가능해짐으로써, 별도의 로봇 작업 셀이 불필요해집니다. 또한 일부의 공정에만 로봇을 적용하고 나머지 작업은 여전히 사람이 담당함으로써 생산공정 전체를 변경해야 하는 부담을 버릴 수 있습니다. 덩치가 크고 무거운 로봇을 설치하려면 상당한 규모의 공간이 확보되어야 하며, 이를 다루기 위한 별도의 설비도 갖춰야 합니다. 작고 가벼운 로..
허니버터칩을 기억하십니까? 한때 대단한 인기를 누리며 품귀현상을 보였고, 사람들은 이 과자를 구해보겠다며 온 동네 마트를 돌아다니곤 했습니다. 저도 편의점 직원과 친해져서 겨우 한개 구했던 기억이 납니다. 하지만 지금은 어디에서든 쉽게 구할 수 있는 평범한 과자로 전락하였습니다. 강한 수요로 인해 생산규모를 확장하였으나 이 제품의 열기는 순식간에 사그라들었습니다. 이 외에도, 꼬꼬면, 처음처럼 순하리 등 반짝하는 수요가 있었다가 인기가 식어버린 제품이 제법 있습니다. 소비자의 요구는 갈수록 다양해지고, 제품 수명 주기는 점점 짧아집니다. 이에 따라 다품종 소량 생산에 대한 요구가 증가하고, 유연한(flexible) 자동화에 대한 중요성이 대두됩니다. 대학교 시절 배운 생산관리 수업에서 다양한 생산 기법을..
산업용 로봇은 수십년 전부터 사용되어 왔습니다. 주로 자동차 제조과정에서 차체핸들링, 스폿용접 등의 용도로 사용되었는데, 수백킬로에 달하는 물체를 번쩍 들어올리곤 합니다. 하지만 이러한 로봇들은 대부분 크기가 크고 무겁기 때문에 이를 적용하지 못하는 생산현장이 많습니다. 또한, 대형로봇이 필요한 현장에서는 이미 적용한 경우가 많습니다. 물론 앞으로도 대형 로봇의 수요는 상당하겠지만, 두드러진 성장은 기대하기 어렵습니다. KUKA KR1000 Titan (출처: http://tools-guru.com/industry/kuka-titan/) Compact and lightweight 최근에는 콤팩트(compact)한 사이즈의 소형로봇에 대한 수요가 급증하고 있습니다. 이러한 트렌드에는 어떤 배경이 있을까요?..
IFR 보고서, Executive Summary World Robotics 2016 Industrial Robots 에서는 2016년부터 2019년까지의 산업용 로봇 시장에 대하여 매년 두 자릿수 대의 성장율을 보일 것으로 예측하였습니다. 또한, 이러한 성장을 가능하게 하는 요인을 나열하였는데, 각각이 어떤 의미를 갖는지 살펴보도록 하겠습니다. 상당수는 단순히 "로봇 수요가 증가할 것이다"로 해석할 수 있습니다. 그러나 일부 항목들은 추가 설명이 필요할 것으로 생각되며 이는 별도 포스팅에서 다룰 예정입니다. 1. 인더스트리 4.0은 실제 공장과 가상 현실을 연결시키고, 이는 전세계 제조업에서 매우 중요한 역할을 할 것이다. 컴포넌트로서의 로봇 포스팅에서 언급했던 것처럼, 로봇은 제조업에서 자동화 시스템의..
이번 포스팅에서는 IFR(International Federation of Robotics)에서 제공한 World Robotics 2016 Industrial Robots 보고서를 기준으로 산업용 로봇 시장을 알아보도록 하겠습니다. 보고서는 2016년에 작성되었으며, 2015년까지의 통계자료를 기반으로 합니다. 산업용 로봇 시장 산업용 로봇 시장은 꾸준히 성장하고 있습니다. 특히, 2010년 이후, 연 평균 16%라는 높은 성장률을 기록하며 가파른 성장을 보여주고 있습니다. 2015년에는 전세계적으로 약 254,000 대의 로봇이 판매되었습니다. 이는 US$11.1 billion 정도의 가치를 갖는다고 합니다. 연도별 전세계 산업용 로봇 판매량(출처: Executive Summary World Robot..
힘 제어 (force control) 힘 제어를 이해하기 위해 산업용 로봇의 기본적인 제어 방식을 상기시켜볼 필요가 있습니다. 산업용 로봇은 어떻게 움직이는가 에서 말씀드렸던 것처럼 산업용 로봇은 기본적으로 위치를 제어합니다. 그런데, 위치가 아닌 힘(force)이 제어 대상이 될 경우, 힘 제어(force control)라 합니다. 제어 루프 다이어그램 힘 제어에서는 위치는 더이상 우리의 최대 관심사가 아닙니다. 즉, 목표 힘(target force)을 달성하기 위해서는 위치가 달라질 수 있습니다. 만약, 외부의 힘이 로봇에 가해질 경우, 이 힘에 의해 로봇의 위치가 달라질 수도 있는데요, 이러한 성질로 인해 힘 제어는 순응 모드(compliance mode)라고도 부릅니다. 가속도 법칙에 의하면, 힘..
산업용 로봇에 대해 우리가 기대하는 것은 빠르고 정확한 동작일 것입니다. 이번 포스팅에서는 로봇 동작의 빠르기에 대해 이야기하겠습니다. 조인트 속도 (joint speed) 조인트 속도는 시간 당 조인트 각도 변화량입니다. 이에 대한 개념은 상당히 명확할 것이라 생각됩니다. 조인트 최대속도는 모터와 감속기의 기술사양에 의해 결정됩니다. 산업용 로봇 기술 사양서에서 이를 찾을 수 있을 것입니다. 일반적으로, 링크가 길거나 페이로드가 무거울수록 로봇의 조인트 최대속도는 낮은 경향이 있습니다. 직선 속도 (linear speed) 로봇의 작업 속도를 평가하기 위해서는 엔드 이펙터의 직선 속도가 중요할 것입니다. 그런데 직선 속도는 생각보다 단순하지 않습니다. 로봇에서 움직이는 것은 조인트 뿐이며, 직선 속도는..
산업용 로봇에 우리가 기대하는 것은 빠르고 정확한 동작일 것입니다. 이번 포스팅에서는 로봇 동작의 정확한 정도에 대해 이야기하겠습니다. 반복정밀도 (repeatability) 산업용 로봇은 어떻게 움직이는가 에서 언급한 것처럼, 우리는 로봇의 목표위치와 이동경로를 티칭하고, 로봇은 정해진 프로그램에 의해 반복적으로 동작합니다. 로봇이 주어진 작업을 수행하기 위해 로봇은 항상 동일한 위치에 도달해야 합니다. 동일한 목표 위치에 대해 이전 사이클과 다음 사이클에서 로봇이 실제로 도달한 위치가 다르다면 작업에 영향을 미칠 수 있습니다. 로봇이 반복해서 동일한 목표위치로 이동하도록 명령할 때, 로봇의 실제 위치의 오차가 얼마나 될지 나타내는 사양이, 반복정밀도(repeatability) 입니다. 사격을 배울 때..
로봇 시스템 (robotic system) 산업용 로봇은 그 자체로는 의미 있는 일을 할 수 없습니다. 기본적으로 툴을장착해야 하며, 필요에 따라서는 컨베이어 등 주변장치와 통합되어야 합니다. 산업현장에서 로봇은 항상 시스템(system)으로 사용되며, 로봇은 시스템의 핵심 컴포넌트(key component)입니다. 로봇 시스템 (출처: 2-Finger 85 on Universal Robots, Robotiq) 자동화 시스템을 구성할 때, 로봇 없이, 해당 작업에 필요한 기계를 직접 설계할 수도 있습니다. 하지만, 설계 비용이 로봇 가격보다 큰 경우가 많으며, 작업이 변경될 경우 기계는 무용지물이 된다는 단점이 있습니다. 따라서, 다양한 응용에 활용할 수 있는 로봇암을 포함한 로봇 시스템을 적용하는 것이..
'로봇'이라 하면, 실제 동작하는 기구부를 떠올릴 것입니다. 하지만 데스크탑 PC에서 모니터와 본체가 나뉘어지듯이, 일반적인 산업용 로봇은 로봇암 기구부와 제어기로 나뉘어 집니다. 이번 포스팅에서는 하드웨어 및 소프트웨어 관점에서 산업용 로봇이 어떻게 구성되어 있는지 살펴보도록 하겠습니다. 하드웨어 (hardware) 처음에 언급한 바와 같이 산업용 로봇은 로봇암 기구부와 제어기로 분류할 수 있습니다. Robotic arm and controller (출처: UR5 with control box, Universal Robots) 로봇암은 링크와 구동부인 조인트로 구성됩니다. 우리 몸으로 치면 몸통부분이라 할 수 있는데, 링크는 팔이고, 조인트는 이름 그대로 팔꿈치나 어깨, 손목과 같은 관절에 해당된다고 ..
- Total
- Today
- Yesterday
- 로봇 트렌드
- cobots
- 로봇팔
- 로봇 시장
- 미래 로봇
- 사람 로봇 협업
- dynamics
- 로봇 시스템
- robotics
- 로봇 안전
- IIoT
- 모션
- kinematics
- 로봇 제어
- 동역학
- 로봇 어플리케이션
- robot market
- Robot Theory UR robots
- 협업로봇
- 안전 표준
- 기구학
- 로봇암
- 한국 로봇 시장
- human-robot collaboration
- 협동로봇
- industrial robots
- 유니버설로봇
- 로봇 응용
- 산업용로봇
- IFR
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |